2023-24

Department of Chemistry

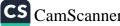
Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

B.Sc. I Semester (NEP)

Semester-I Paper-I (Theory) Course Title: Fundamentals of Chemistry-I


Programme/Class: Certificate in Introductory Chemistry	Year: First	Semester: First
AND THE REAL PROPERTY OF	Pap	er-I Theory Subject: Chemistry
Course Code:	Course Title	e: Fundamentals of Chemistry-I

Course outcomes: There is nothing more fundamental to chemistry than the chemical bond. Chemical bonding is the language of logic for chemists. Chemical bonding enables scientists to take the 100-plus elements of the periodic table and combine them in myriad ways to form chemical compounds and materials. Periodic trends, arising from the arrangement of the periodic table, provide chemists with an invaluable tool to quickly predict an element's properties. These trends exist because of the similar atomic structureof the elements within their respective group families or periods, and because of the periodic nature of the elements. Reaction mechanism gives the fundamental knowledge of carrying out an organic reaction in a step-by-step manner. This course will provide a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving with a molecular perspective. Students will gain an understanding of;

✓ Molecular geometries, physical and chemical properties of the molecules.

- Current bonding models for simple inorganic and organic molecules in order to predict structures and important bonding parameters.
- This course gives a broader theoretical picture in multiple stages in an overall chemical reaction.
- It describes reactive intermediates, transition states and states of all the bonds broken and formed.
- ✓ It enables to understand the reactants, catalyst, stereochemistry and major and minor products of any organic reaction. It describes the types of reactions and the kinetic and thermodynamic aspects one should know for carrying out any reaction and the ways how the reaction mechanism can be determined.
- ✓ The chapter stereochemistry gives the clear picture of two-dimensional and threedimensional structure of the molecules, and their role in reaction mechanism. Thecourse will also strengthen the knowledge of students regarding complete picture of states of matter that includes gaseous, liquid, solid and colloidal states.

BISHT ASSISTANT PROFESSOR (CHEMISTRY) GOVT. PG COLLEGE BERINAG PITHORAGARH

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

Credits:4	Compulsory
Max. Marks: 25+75	Min. Passing Marks:

Total Number of Hours = 60

Uni	Content	Number of Hours
1	Atomic Structure and Periodic Properties: Dual nature of matter; de Broglie concept. Heisenberg uncertainty principle; itssignificance. Atomic orbitals, Schrödinger wave equation (no derivation); significance of ψ and ψ^2 . Quantum numbers, radial and angular wave functions and probability distribution curves, shapes of s, p and d orbitals. Aufbau energy diagram, Pauli's exclusion principle. Hund's rule of maximum multiplicity. Electronic configuration of elements (s block, p block and first series of d-block elements). Effective nuclear charge, Slater's rule. The general idea of Modern periodic table, atomic and ionic radii, ionization potential, electron affinity, electronegativity-definition, trends of variation in periodic table and their application in prediction and explaining the chemical behaviour of elements and compounds thereof.	MR. BHUPENDRA BISMT 1
2	Chemical Bonding-I: Ionic bond, covalent bond-Valence Bond Theory and its limitations; various types of hybridization and shapes of different inorganic and organic molecules. Valence Shell Electron Pair Repulsion Theory (VSEPR) and shapes of NH ₃ , H ₂ O, H ₃ O ⁺ , SF ₄ , ClF ₃ , ICl ₂ ⁻ , TeF ₅ ⁻ NH ₄ ⁺ and other simple molecules/ions (CO ₂ , SO ₂ , SO ₃ , Cl ₂ O ₇ , SO ²⁻ , CO ₃ ²⁻ , NO ₃ ⁻ , PO ₄ ³⁻) including compounds of xenon. Resonance, hyperconjugation, field effects- inductive, mesomeric, electromeric effect	MR. GHUPE NORA &
	Mechanism of Organic Reactions: Types of reagents- electrophiles and nucleophiles. Types of organic reactions. Energy considerations. Reactive intermediates- carbocations, carbanions, free radicals, carbenes, arynes and nitrenes (with examples).	R.R.S.Bilmr 8
	Stereochemistry of Organic Compounds: Types of isomerism- optical isomerism- elements of symmetry, molecular chirality, enantiomers, stereogenic centers, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centre, diastereomers, threo and erythro diastereomers, meso compounds, inversion, retention and racemization. Relative and absolute configuration, sequence rules, D & L and R & S systems of compoundature. Geometrical isomerism: determination of configuration of geometrical isomers, E & Z system of	B.S. AIME

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

	nomenclature.	
5	States of Matter-I: Gaseous State-Postulates of kinetic theory of gases, deviation from ideal behavior, van der Waal's equation of states, Critical phenomena – PV isotherms of real gases, relationship between critical constants and van der Waals constants. Molecular velocities: Root mean square, average and most probable velocities, qualitative discussion of the Maxwell's distribution of molecular velocities, Numerical problems.	12
	Liquid State-Intermolecular forces, Structural differences between solids, liquids and gases. Physical properties of liquidsincluding their methods of determination: surface tension, viscosity, Numerical problems.	DR. B.s. Bism
6	States of Matter-II: Solid State: Introduction to crystalline materials, Definition of space lattice, unit cell, crystal planes, Miller indices, Laws of crystallography – (i) law of constancy of interfacial angles (ii) law of rationality of indices (iii) law of symmetry. Symmetry elements in crystals, X-ray diffraction by crystals. Bragg's equation, Numerical problems.	ma. By DENDRA BIMT
	Colloidal State: Definition of colloids, classification of colloids. Solids in liquids (sols): properties – kinetic, optical and electrical; stability of colloids, protective action, Hardy-Schulze law, gold number.	ma. By DE

	Semester-II
	Paper-I
	(Theory)
Course Title:	Fundamentals of Chemistry-II

Programme/Class: Certificate in Introductory Chemistry	Year: First	Semester: Second
and the second sec	Pap	er-I Theory Subject: Chemistry
Course Code:	Course Title: Fundamentals of Chemistry-I	

CS CamScanner

DB B S BISHT

ROFESSOR

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

Course outcomes: Upon successful completion of this course, the students will be able to describe the reactions shown by aliphatic and aromatic compounds. They will also able to understand the bonding in inorganic molecules, salient features of s- and p- block elements, different aspects of chemical kinetics, catalysis and first law of thermodynamics.

Credi	ts: 4	Compulsory	REAL	
N	fax. Marks: 25+75			
Units		Total Number of Hours = 60		
1		Content	Number of Hours	
	Chemical Bonding-II: Molecular Orbital Theory (MOT) as applied to diatomic homonuclear/heteronuclear inorganic molecules. MO diagrams and bond order of H ₂ , He ₂ , Li ₂ , Be ₂ , B ₂ , C ₂ , N ₂ , O ₂ , F ₂ , Ne ₂ , CO, NO, HF difference between VB and MO theories. Multicentre bonding in electron deficient molecules. Polarization of covalent molecules, Percentage ionic character from dipole and electronegativity difference. Polarizing power and polarizability; Fajan's rule. Metallic bond- Electron Pool, valence bond and MO theories. Weak interactions-hydrogen bonding in inorganic and organic molecules and van der Waals interactions.		MR. BHUPENDRA BISHT 01	
2	atomic & ionic radii, de electropositive nature, energy, flame colourat boiling and melting towards water, oxyge ammonia). Diagonal re $d\pi$ -p π bond, chemistry p-block elements. Sili	- and p-Block Elements: General discussion eriodic (Occurrence, electronic configuration, ensity, ionization potential, metallic behaviour, electronegativity, electron affinity, hydration tion, photoelectric effect, polarization power, point) and chemical properties (reactivity en, air and moisture, hydrogen, halogens, lationship, catenation, inert pair effect, $p\pi$ - $p\pi$, of hydrides, halides, oxides and oxyacids of cates, Boron nitrogen compounds (borazene interhalogen compounds, basic property of	MR. RHUPENDARA BIMT 0	

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

and the second se		
3	Aliphatic Compounds: Chemical reactions of alkanes. Mechanism of free radical halogenation of alkanes. Cycloalkanes- Baeyer's strain theory and its limitations. Ring strain in small rings (cyclopropane and cyclobutane), theory of strainless rings. The case of cyclopropane ring-bent or banana bonds. Chemical reactions of alkenes- mechanisms involved in	10
	hydrogenation, electrophilic and free radical additions, Markownikoff's Rule, hydroboration-oxidation, oxymercuration- reduction. Epoxidation, ozonolysis, hydration, hydroxylation and oxidation with KMnO4, Polymerization of alkenes. Substitution at the allylic and vinylic positions of alkenes. Industrial applicationsof ethylene and propene.	Ja. a.s. arm -
	Chemical reactions of alkynes, acidity of alkynes. Mechanism of electrophilic and nucleophilic addition reactions, hydroboration- oxidation, metal- ammonia reduction, oxidation and polymerization.	A a. a
4	Aromatic Compounds: Aromaticity- the Hückel rule, aromatic ions. Aromatic electrophilic substitution- general pattern of the mechanism, role of σ and π complexes. Mechanism of nitration, halogenation, sulphonation, mercuration and Friedel- Crafts reaction. Energy profile diagrams. Activating and deactivating substituents, orientation and ortho/para ratio. Side chain reactionsof benzene derivatives.	J R. S. S. Bim -
5	Chemical Kinetics and Catalysis: Chemical kinetics and its scope, rate of a reaction, factors influencing the rate of a reaction– concentration, temperature, pressure, solvent, light, catalyst; hetero and homocatalysis, significance. Inhibitors, poisons and promoters. Concentration dependence of rates of simple reaction, Molecularity, Order of reaction- zero order, first order, second order, pseudo-order, Radioactive decay a first order phenomenon, half-life period, Methods of determination of the order of reaction- differential method, method of integration, method of half-life period and isolation methods, Numerical problems.	mp.12 hupenioria
6	Thermodynamics I: Definition of thermodynamic terms, system, surroundings etc. Types of thermodynamic systems and thermodynamic processes. Intensive and extensive properties. Concept of heat and work, first law of thermodynamics, definition of internal energy and enthalpy. Heat capacity – heat capacities at constant volume and at constant pressure and their relationship, calculation of w, q, dU & dH for the expansion of ideal gases under isothermal and reversible conditions. Thermochemistry; standard state, Standard enthalpy of formation – Hess's law of heat summation and its application. Temperature dependence of enthalpy, Kirchoff's equation, Numerical problems.	10 July 13. 1. 13. 11.
	DR. B S ASSISTANT F (CHEMI GOVT. PG PEDINAC DIT	STRY)

CS CamScanner

Govt P G College Berinag

Teaching Plan Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

Semester-III Paper-I (Theory) Course Title: General Chemic

Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Third
	Pape	r-I Theory Subject: Chemistry
Course Code:	Cours	se Title: General Chemistry-I

Course outcomes: This paper provides detailed knowledge of synthesis of various classes of organic compounds and functional groups inter conversion. Organic synthesis is the most important branch of organic chemistry which provides jobs in production & QC departments related to chemicals, drugs, medicines, FMCG etc. industries.

- ✓ It relates and gives an analytical aptitude for synthesizing various industrially important compounds.
- ✓ This paper also provides a detailed knowledge on the elements present in our

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)


surroundings, their occurrence in nature. Their position in periodic table, their physical and chemical properties. This paper also gives detailed understanding of the d-block elements and their characteristics.

- After successful completion of this course, the students will be able to gather the information regarding Werner's theory and VBT of transition metal complexes.
- Students will be able to learn the basic concepts of spontaneity, chemical and phase equilibrium and able to apply these concepts in predicting the spontaneous reactions and will be able to solve the numerical problems based on these concepts.

Credit: 4	Compulsory
Max. Marks: 25+75	
Total No. of H	ours- = 60

Unit	Contents	Number of Hours
	\sim	

DR. B S BISHT ASSISTANT PROFESSOR (CHEMISTRY) GOVT. PG COLLEGE BERINAG PITHORAGARH

Department of Chemistry Govt P G College Berinag **Teaching Plan**

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

1	Chemistry of Transition Elements (First, second and third Transition Series): Characteristic properties of the elements; electronic configuration, atomic & ionic radii, oxidation states and stability of uncommon oxidation states, ionization energy, boiling & melting points, complex compound formation, colour, catalytic properties and magnetic properties. coordination number and geometry. Comparative treatment of 3d, 4d and 5d elements and their analogues in respect of occurrence, atomic & ionic radii, oxidation state, ionization energy, complex formation tendency, magnetic behaviour, geometry and colour.	10
2	Coordination Chemistry-I: Definition, terminology (ligand, coordination number, coordination sphere, complex ion etc.), Nomenclature of coordination compounds (IUPAC system), Werner's theory for coordination compounds; its experimental verification, effective atomic number (EAN) concept, 18-electron rule, stability of complexes and factors contributing to the stability. Chelates- Introduction, factors affecting the stability of chelates, thermodynamic origin of stability, applications. Valence Bond Theory (VBT) for coordination compounds, geometry of complexes (tetrahedral, octahedral, square planar), magnetic properties of complex compounds.	10
3	Halides: Chemical reactions. Alkyl, aryl and vinyl halides. Mechanism of nucleophilic substitution reactions, S_N2 and S_N1 reactions with energy profile diagrams.	8
4	Alcohols and Phenols: Alcohols: Reactions of alcohols. Dihydric alcohols-methods of preparation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc)4 and HIO4] and pinacol- pinacolone rearrangement. Trihydric alcohols-methods of formation, chemical reactions of glycerol.	12

Govt P G College Berinag Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

	Phenols: Physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols-electrophilic aromatic substitution, acylation and carboxylation. Mechanism of Fries rearrangement, Claisen condensation, Gatterman synthesis, Houben- Hoesch reaction, Lederer-Manasse reaction and Reimer-Tiemann reaction.	
5	Thermodynamics II: Second law of thermodynamics, need of the law, different statements of the law. Carnot cycle and itsefficiency, Carnot theorem. Thermodynamic scale of temperature. Concept of entropy: entropy as a state function, entropy as a function of V and T, entropy as a function of P and T, entropy change in physical and chemical processes, entropy change for reversible, irreversible and equilibrium condition. Clausius inequality, entropy as criteria of spontaneity and equilibrium. Entropy change in ideal gases. Gibbs free energy and Helmholtz work functions. Criteria for thermodynamic equilibrium and spontaneity, advantage Gibbs free energy and Helmholtz work functions over entropy change for spontaneity. Variation of G andA with P, V and T, Gibbs-Helmholtz equation, Numerical problems.	12
6	 Chemical Equilibrium: The law of mass action, free energy and equilibrium constant, factors influencing equilibrium constant, relationship between Kp and Kc. Le-Chatelier's principle, Numerical problems. Phase Equilibrium: Statement and meaning of the terms: phase, component and degree of freedom, Gibbs phase rule, phase equilibria of one component systems- water, carbon dioxide and sulphur. Raoult's and Henry's law. 	8

DR. B S BISHT ASSISTANT PROFESSOR (CHEMISTRY) GOVT. PG COLLEGE BERINAG PITHORAGARH

Semester-IV Paper-I (Theory) Course Title: General Chemistry-II

	arse miler	Semester: Fourth
Programme/Class: Diploma in Chemical	Year: Second	
Science	Pane	er-I Theory Subject: Chemistry
	Tap	se Title: General Chemistry-II
Course Code:	Cour	se Title: General Chemistry ==

Course outcomes: This paper provides detailed knowledge of synthesis of aldehydes, ketones, carboxylic acids and functional groups inter conversion. The students will be able to describe the concepts of electrochemistry in detail and its applications. Also, they will be able to solve the numerical problems based on these concepts. Students will be able to define the acids and bases on the basis of various concepts/ theories and will be able to identify the position of various elements in the periodic table and able to explain their properties on thebasis of their position.

	Credits: 4	Compulsory	
	Max. Marks: 25+75	Min. Passing Mark	s:
	Total No	o. of Hours- = 60	
Unit	Content	S	Number of Hours
1	Acids and Bases: Arrhenius concept, Flood and Lewis concept of acids and b Theory: Classification of acids and bas hard and soft acid base concept, acid b softness. Symbiosis, theoretical basis electronegativity and hardness and so strength of acids and bases. Acid-bas media.	bases; Hard and Soft Acid-Base ses as hard and soft. Pearson's base strength and hardness and is of hardness and softness, oftness; Role of the solvent and	10
2	Chemistry of Inner Transition Lanthanides: Electronic configuration ionic radii, lanthanide contraction and formation, colour; Methods of separation crystallization, fractional precipitation solvent extraction and ion exchange m Chemistry of Actinides: General fer configuration, atomic & ionic radii, i states and complex formation.	ad its consequences, complex tion of lanthanides- fractional n, change in oxidation state, ethods. eatures of actinides-electronic	10

Govt P G College Berinag Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

1	and the second second		and the second se
	3	Aldehydes and Ketones: Comparative account of properties of aliphatic and aromatic aldehydes and ketones. Mechanism of nucleophilic additions to carbonyl group with particular emphasis on benzoin, aldol, Perkin and Knoevenagel condensation. Condensation with ammonia and its derivatives; Wittig reaction, Mannich reaction. Use of acetals as protecting group. Oxidation of aldehydes, Baeyer-Villiger oxidation of ketones, Cannizzaro reaction, MPV, Clemmensen, Wolff-Kishner, LiAlH4 and NaBH4 reductions. Halogenation of enolizable ketones. An introduction to α -, β -unsaturated aldehydes and ketones.	
	4	Carboxylic Acids: Reactions of carboxylic acids, Hell-Volhard- Zelinsky reaction. Synthesis of acid chlorides, esters and amides.	10
		Reduction of carboxylic acids, mechanism of decarboxylation. Methods of formation and chemical reactions of halo acids, hydroxy acids- malic, tartaric, and citric acids. Methods of preparation and chemical reactions of unsaturated monocarboxylic acids. Dicarboxylic acids-methods of preparation and effect of heat and dehydrating agents.	
	5	Electrochemistry I: Electrical transport-conduction in metals and electrolytic solutions, specific conductance and equivalent conductance, measurement of equivalent conductance, variation of equivalent and specific conductance with dilution. Arrheniustheory of electrolytic dissociation and its limitations, weak and strong electrolytes, Ostwald's dilution law, its uses and limitations, Numerical Problems.	8
	6	Electrochemistry II: Oxidation state, types of redox reactions, balancing of chemical reactions by ion electron and oxidation state method. Computations of equivalent weights. Types of reversible electrodes-gas-metal ion, metal-metal ion, metal-insoluble salt anion and redox electrodes. Electrode reactions, Nernst equation, derivation of cell EMF and single electrode potential, standard hydrogen electrode-reference electrode, standard electrode potential, sign conventions, electrochemical series and its significance. Electrolytic and Galvanic cells-reversible and irreversible cells, conventional representation of electrochemical cells. EMF of a cell and its measurements. Calculation of thermodynamic quantities of cell reactions (Δ G, Δ H and K), Numerical Problems.	12
	States and		and the second s

DR. B S BISHT ASSISTANT PROFESSOR (CHEMISTRY) GOVT. PG COLLEGE BERINAG PITHORAGARH

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

B.Sc. V Semester	(Paper I	I)-Physical	Chemistry
------------------	----------	-------------	-----------

S. No.	Contents Thermodynamics II: Second law of thermodynamics, need of the law, different statements of the law. Carnot cycle and its efficiency, Carnot theorem. Thermodynamic scale of temperature. Concept of entropy: entropy as a state function, entropy change in physical and chemical processes, entropy change in reversible and irreversible processes. Gibbs-Helmholtz equation	Contact Hours/ Lectures 12 Lectures
2	Solutions and Colligative Properties: Ideal and non-ideal solutions, Dilute solutions, colligative properties, Raoult's law, relative lowering of vapour pressure, molecular mass determination. Osmosis, law of osmotic pressure, determination ofmolecular mass from osmotic pressure. Elevation of boiling point and depression in freezing point. Abnormal molar mass, degree of dissociation and association of solutes.	8 Lectures
3.	Photochemistry: Difference between thermal and photochemical processes. Laws of photochemistry; Grothuss-Drapper law, Lambert's law, Lambert-Beer's law, Stark-Einstein law, Concept of fluorescence, phosphorescence, quantum yield.	8 Lectures
4.	Energy and Distribution Law: Degrees of freedom, types of energies in linear and non-linear molecules, Applications of Maxwell-Boltzmann distribution law	6 Lectures
5.	Thermodynamics III : Statement and concept of residual entropy, third law of thermodynamics, unattainability of absolute zero, Nernst heat theorem. Evaluation of absolute entropy from heat capacity data	6 lectures

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

B.Sc. V Semester (Paper I)-Phy	ysical Chemistry
--------------------------------	------------------

S. No.	Contents	Contact Hours/ Lectures
1	Spectroscopy: Nuclear magnetic resonance (NMR) spectroscopy; Proton magnetic resonance (1H NMR) spectroscopy, nuclear shielding and deshielding, chemical shift and molecular structure, spin-spin splitting and coupling constants, areas of signals, interpretation of pmr spectra of simple organic molecules such as ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromoethane, ethyl acetate, toluene and acetophenone.	8 Lectures
2	Carbohydrates: Classification and nomenclature. Monosaccharides, mechanism of osazone formation, inetrconversion of glucose and fructose, chain lengthening and chain shortening of aldoses. Configuration of monosaccharides. Erythro and threo diastereomers. Cyclic structure of D(+)- glucose. Mechanism of mutarotation.	7 Lectures
3	Amino Acids, Peptides, Proteins and Nucleic Acids: Classification, structure and stereochemistry of amino acids. Acid- base behaviour, isoelectric point and electrophoresis. Preparation and reactions of α -amino acids. Nomenclature of peptides and proteins. Peptide structure determination, end group analysis, Protein denaturation/renaturation. Nucleic acids: introduction, constituents of nucleic acids.	7 Lectures
4	Fats, Oils and Detergents: Natural fats and common fatty acids, glycerides, hydrogenation of unsaturated oils. Saponification value, iodine value and acid value. Soaps, synthetic detergents, alkyl and aryl sulphonates.	6 Lectures
5	Synthetic Polymers: Addition or chain-growth polymerization. Free radical vinyl polymerization, ionic vinyl polymerization, Ziegler-Natta polymerization and vinyl polymers. Condensation or step-growth polymerization. Polyesters, polyamides, phenol formaldehyde resins, urea formaldehyde resins. Natural and synthetic rubber.	6 Lectures
6	Natural Products: Classification, extraction and general methods of structure determination of terpenoids and alkaloids, chemistry of citral and nicotine.	

DR. B S BISHT ASSISTANT PROFESSOR (CHEMISTRY) GOVT. PG COLLEGE BERINAG PITHORAGARH

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

Paper II M.Sc. SEMESTER I

Organic Chemistry-1

S.No.	Contents	Contact
		Hours/
1	N. / am	Lectures
1	Nature of Bonding in Organic Molecules: Delocalized chemical bonding conjugation, cross conjugation, resonance, hyperconjugation, bonding in fullerenes, tautomerism. Aromatcity in benzenoid and non-benzenoid compounds, alternant and non- alternant hydrocarbons, Hückel's rule, energy level of π - molecular orbitals, annulenes, antiaromaticity, ψ -aromaticity, homo- aromaticity, PMO approach. Bond weaker than covalent bond, addition compounds, crown ether complexes and cryptands, inclusion compounds, cyclodextrins, catenanes and rotaxanes.	
		10
t c , h i i s i c S S i S i c c t	symmetry number. Stereoisomerism: Classification, racemic modification, molecules with one, two or more chiral centres. Configuration, nomenclature, D, L, R, S and E, Z nomenclature. Axial and planar chirality and helicity (P & M); stereochemistry and configurations of allenes, spiranes, alkylidene, cycloalkanes, adamantanes, catenanes, biphenyls (atropisomerism), bridged biphenyls, ansa compounds and cyclophanes. Topicity and prostereoisomerism: Topicity of ligands and faces and their nomenclature, stereogenicity, cyclostereoisomerism; di- and tri-substituted), cyclohexenes, cyclohexanes, (mono- dialocyclohexanones, decalines, decalols, decalones Assymetric tereochemistry (cyclic and acyclic). Qualitative correlation between onfirmation and reactivity- Curtin-Hammitt principle. tereochemistry of compounds containing N, S and P. chirogenicity, seudoasymmetry and stereogeniccentre. tereoselectivity, stereospecificity, regioselectivity on d	Lectures
re	ricyclicReactions: Molecular orbital symmetry E	
Cl	ericyclicReactions: Molecular orbital symmetry, Frontier orbitals ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system. I assification of pericyclic reactions. Woodward-	10 Lectures

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

 Hoffmann correlation diagrams. FMO and PMO approach. Electrocyclic reactions- conrotatory and disrotatory motions, 4n, 4n+2 and allyl system. Cycloadditions- antarafacial and suprafacial additions, 4n and 4n+2 systems, 2+2 addition of ketenes, 1,3-dipolar cycloadditions and cheleotropic reactions. Sigmatropic rearrangements- suprafacial and antarafacial shifts of H, Sigmatropic shifts involving carbon moieties, 3,3- and 5,5 sigmatropic rearrangements. Claisen, Cope and Aza-Cope rearrangements. Fluxional tautomerism, Ene reaction. Aliphatic Nucleophilic Substitution: The S_N⁻, S_N⁻, mixed S ¹/_N and S ²/_N S ¹/_N and SET mechanisms. Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis and ultrasound, ambident nucleophile, regioselectivity. Neighbouring group mechanism, neighbouring group participation by π and σ bonds, anchimeric assistance. Classical and nonclassical carbocations, phenonium ions, norbornyl system. Aromatic Nucleophiles Substitution: The S_N Ar, S ⁺, benzyne and S ¹/_N mechanism. Reactivity-effect of substrate structure leaving group and attacking nucleophile. The Von-Richter, Sommelet-Hauser and Smiles rearrangement Reactions: Pinacol-Pinacolone rearrangement, Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Allylic rearrangement, Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR Spectroscopy in detection of carbocations 			Carlo Car alan Selar
 S ¹_N and S ²_N S ¹_N and SET mechanisms. Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis and ultrasound, ambident nucleophile, regioselectivity. Neighbouring group mechanism, neighbouring group participation by π and σ bonds, anchimeric assistance. Classical and nonclassical carbocations, phenonium ions, norbornyl system. Aromatic Nucleophilic Substitution: The SN Ar, S ¹_N benzyne and S ¹_N mechanism. Reactivity-effect of substrate structure leaving group and attacking nucleophile. The Von-Richter, Sommelet-Hauser and Smiles rearrangement Reactions: Pinacol-Pinacolone rearrangement, Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Allylic rearrangement, Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR 		Electrocyclic reactions- conrotatory and disrotatory motions, 4n, 4n+2 and allyl system. Cycloadditions- antarafacial and suprafacial additions, 4n and 4n+2 systems, 2+2 addition of ketenes, 1,3-dipolar cycloadditions and cheleotropic reactions. Sigmatropic rearrangements- suprafacial and antarafacial shifts of H, Sigmatropic shifts involving carbon moieties, 3,3- and 5,5 sigmatropic rearrangements. Claisen, Cope and Aza-Cope rearrangements Eluvional tautomerism Ene reaction	
 of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis and ultrasound, ambident nucleophile, regioselectivity. Neighbouring group mechanism, neighbouring group participation by π and σ bonds, anchimeric assistance. Classical and nonclassical carbocations, phenonium ions, norbornyl system. Aromatic Nucleophilic Substitution: The S_N Ar, S benzyne and S ¹/_N mechanism. Reactivity-effect of substrate structure leaving group and attacking nucleophile. The Von-Richter, Sommelet-Hauser and Smiles rearrangement Reactions: Pinacol-Pinacolone rearrangement, Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Allylic rearrangement, Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR 	4	S $^{1}_{N}$ and S $^{2}_{N}$ S $^{i}_{N}$ and SET mechanisms. Nucleophilic substitution at	6 Lectures
phenonium ions, norbornyl system.Aromatic Nucleophilic Substitution: The S _N Ar, S , benzyne and S , mechanism. Reactivity-effect of substrate structure leaving group and attacking nucleophile. The Von-Richter, Sommelet-Hauser and Smiles rearrangements.6 Lectures6Mechanism of Carbocation Rearrangements.8 Lectures6Mechanism of Carbocation Rearrangement, Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Allylic rearrangement, Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Application of NMR8 Lectures		an allylic, aliphatic trigonal and a vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis and ultrasound, ambident nucleophile, regioselectivity. Neighbouring group mechanism, neighbouring group participation by π and σ bonds, anchimeric	
 Aromatic Nucleophilic Substitution: The S_N Ar, S⁺, benzyne and S⁺_N mechanism. Reactivity-effect of substrate structure leaving group and attacking nucleophile. The Von-Richter, Sommelet-Hauser and Smiles rearrangements. Mechanism of Carbocation Rearrangement Reactions: Pinacol-Pinacolone rearrangement, Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Allylic rearrangement, Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR 			
 leaving group and attacking nucleophile. The Von-Richter, Sommelet-Hauser and Smiles rearrangements. Mechanism of Carbocation Rearrangement Reactions: Pinacol- Pinacolone rearrangement, Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Allylic rearrangement, Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR 	5	Aromatic Nucleophilic Substitution: The S _N Ar, S , benzyne	6 Lectures
Sommelet-Hauser and Smiles rearrangements.6Mechanism of Carbocation Rearrangement Reactions: Pinacol- Pinacolone rearrangement, Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Allylic rearrangement, Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR		and S_{N}^{1} mechanism. Reactivity-effect of substrate structure	
Pinacolone rearrangement, Wagner-Meerwein rearrangement, Benzilic acid rearrangement, Allylic rearrangement, Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR			
rearrangement, Benzilic acid rearrangement, Allylic rearrangement, Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR	6		8 Lectures
Hofman reaction, Schmidt reaction, Baeyer- Villiger oxidation, Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR			
Cumene-Hydroperoxide rearrangement, Curtius rearrangements, Lossen rearrangement, Dakin reaction. Application of NMR	1.20		
Lossen rearrangement, Dakin reaction. Application of NMR			
	marries .		

DR. B S BISHT ASSISTANT PROFESSOR (CHEMISTRY) GOVT. PG COLLEGE BERINAG PITHORAGARH

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

Paper IV M.Sc. SEMESTER I

Group Theory and Instrumentation Chemistry

S.No.	Contents	Contact
0.1 10.	Contents	Hours/
	here here here here here here here here	Lectures
1	Symmetry and Group Theory in Chemistry: Symmetry elements and symmetry operations, definitions of group and subgroup and their characteristics, relation between orders of and subgroup and their characteristics, relation between orders of a finite group and its subgroup. Conjugacy relation and classes of symmetry operations, point symmetry (or group) and its classification, Schonfliess symbols, representation of group by matrices (representation for the C_n, C_{nv}, C_{nh} etc. groups to be worked out explicity), products of symmetry operations. Character of a representation. The great orthogonality theorem (without proof) and its importance. Character tables and their use in spectroscopy.	Lectures
2	X-ray Diffraction Methods: Bragg condition, Miller indices, Laue's method, Bragg's method, Debye- Scherrer method of X- ray structural analysis of crystals. Description of the procedure for an X- ray structure analysis, absolute configuration of molecules. Ramchandran diagram. General Introduction of Electron Diffraction: Scattering intensity vs scattering angle, Wierl equation, measurement technique, elucidation of structure of simple gas phase molecules.	12 Lectures
	Chromatographic methods: Principle, instrumentation and applications of gas and liquid chromatography. Principle and application of TLC, paper, column and HPLC. Ion Exchange chromatography: Cationic, anionic exchangers and their applications. Gas Chromatography: Theory of gas chromatography, parts of gas chromatograph, detectors (TCD, FID, ECD), Van-Deemter equation (no derivation), concept about HEPT- plate theory and rate theory. Applications.	Lectures
	Radio Analytical Methods: Basic principles and types of measuring instrument, isotope dilution techniques- principle of operations and uses. Applications.	5 Lectures

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

M.Sc. SEMESTER II Paper II **Organic Chemistry-II**

S.No.	Contents	Contact Hours/ Lectures
1	Aliphatic Electrophilic Substitution: Biomolecular mechanisms- S _E 2 and S _E 1. The S _E 1 mechanism, electrophilic substitution accompanied by double bonds shifts. Effect of substrates, leaving group and the solvent polarity on the reactivity	8 Lectures
2	Aromatic Electrophilic Substitution: The arenium ion mechanism, orientation and reactivity, energy profile diagrams. The ortho/para ratio, ispo attack, orientation in other ring systems. Quantitative treatment of reactivity in substrates and electrophiles. Diazonium coupling.	
3	Free Radical Reactions: Types of free radical reactions, free radical substitution mechanism, mechanism at an aromatic substrate, neighbouring group assistance. Reactivity for aliphatic and aromatic substrates at a bridgehead. Reactivity in the attacking radicals. The effect of solvents on reactivity. Allylic halogenation (NBS), oxidation of aldehydes to carboxylic acids, autooxidation, coupling of alkynes and arylation of aromatic compounds by diazonium salts. Free radical rearrangements.	
\$	Addition to Carbon-Carbon Multiple Bonds: Mechanistic and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and free radicals, regio-and chemoselectivity, orientation and reactivity. Addition to cyclopropane ring. Hydrogenation of double and triple bonds. hydrogenation of aromatic rings. Hydroboration.,	
5	Addition to Carbon-Hetero Multiple Bonds Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds acids, esters and nitriles. Addition of Grignard reagents, organozins and organolithium reagents to carbonyl and unsaturated carbony compounds. Hydrolysis of esters and amides, ammonolysis of esters	

DR. B S BISHT ASSISTANT PROFESSOR (CHEMISTRY) GOVT. PG COLLEGE BERINAG PITHORAGARH

Department of Chemistry Govt P G College Berinag **Teaching Plan**

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

Elimination and Name Reactions: The E2, E1 and E1cB I	10
Elimination and Name Reactions. The D2, be double bond. I mechanisms and their spectrum. Orientation of the double bond. I	Lectures
Reactivity-effects of substrate structures, attacking base, the leaving	
group and the medium. Mechanism and orientation in pyrolytic	
elimination Vilsmeier reaction, Gattermann-Koch reaction,	
Sandmeyer reaction, Hunsdiecker reaction, Michael reaction.	
Sharpless asymmetric epoxidation, Aldol, Knoevenagel, Claisen,	
Mannich, Benzoin, Perkin and Stobbe reactions, Wittig	
reaction, Heck reaction, Still reaction, Sonogarishira, Negishi	
coupling, Grubbs Catalyst.	

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

M.Sc. SEMESTER II Paper IV Spectroscopic Techniques-I

.No.	Contents	Contact Hours/ Lectures
	Electron Spin Resonance Spectroscopy: Basic Principles, zero field splitting and Kramer's degeneracy, factors affecting the 'g' value. Hyperfine coupling isotopic and anisotropic hyperfine	16 Lectures
	coupling constants, spin Hamiltinian, spin densities, measurement techniques, spin polarization for atoms and transition metal ions, spin-orbit coupling and significance of g-tensors, application to inorganic and organic free radicals and to transition metal complexes (having an unpaired electron) including biological	
2	 systems. Nuclear Magnetic Resonance Spectroscopy: Nuclear Spin, nuclear resonance, saturation, shielding of magnetic nuclei, chemical shift and its measurements, factors influencing the chemical shift. Deshielding, spin-spin interaction, factors influencing coupling constant (J). Classification (ABX, AMX, ABC, A₂B₂ etc.), spin decoupling, basic idea about instruments, NMR studies of nuclei other than proton; ¹³C, ¹⁹F and ³¹P. Advantages of FT NMR. Use of NMR in medical diagnostics. Simple problems and interpretation. NOE, simplification of complex spectra by the use of Shift reagent and field strength Nuclear Overhauser Effect (NOE).¹³C NMR spectroscopy general considerations, chemical shift (aliphatic, olefinic, alkyne and aromatic hetero aromatic and carbonyl carbon). Coupling constants. 	
3	 Constants. Mass Spectrometry: Introduction, ion production-EI, CI, FD and FAB, factors affecting fragmentation, ion analysis, ion abundance Mass spectral fragmentation of organic compounds, commo functional groups, molecular ion peak, metastable peak, McLaffert rearrangement. Nitrogen rule, example of Mass fragmentation of organic compounds with respect to their structure determination. Problems based on spectroscopic techniques. 	n y

DR. B'S BISHT ASSISTANT PROFESSOR (CHEMISTRY) GOVT. PG COLLEGE BERINAG PITHORAGARH

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

M.Sc. SEMESTER III Paper II

Spectroscope Techniques -2

S.No.	Contents	Contact Hours/ Lectures
1	Mössbauer Spectroscopy: Basic principles, spectral parameters and spectrum display. Application of the technique to the studies of (i) bonding and structure of Fe ⁺⁺ and Fe ⁺⁺⁺ compounds (ii) Sn ⁺² and Sn ⁺⁴ compounds-nature of M-L bond, coordination number, structure and iii) detection of oxidation state and inequivalent MB atoms.	9 Lectures
2	Ultraviolet and Visible Spectroscopy: Various electronic transitions (185 to 800 nm), Lambert-Beer's Law, effect of solvent	9 Lectures
	on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, diens, conjugated polyenes. Fieser-Woodward rules for conjugated diens and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds.	
3	Molecular Dyssemetry and Chiroptical Properties: Linear and circularly polarized lights, circular birefringence and circular dichroism, ORD and CD curves, Cotton effects. The axial helo ketone rule, Octent diagrams, Helicity and Lowe's Rule. Application of ORD and CD to structural and stereochemical problems	7 Lectures
	Infrared Spectroscopy: Instrumentation and simple handling. I Selection rules, normal modes of vibration, group frequencies, I overtones, hot bands, factors affecting the bond positions and intensities, Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines and carbonyl compounds (ketones, aldehydes, esters ,amides, acids anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding, solvent effect on IR of gaseous, solids and polymeric materials. Review of linear harmonic oscillator, vibrational energies of diatomic molecules, zero point energy, force constant and bond. Strength' anharmonicity, Morse potential energy diagram, vibration-rotation spectroscopy, P,Q,R branches. Breakdown of Oppenheimer approximation; vibrations of polyatomic molecules. far IR region, metal-ligand vibrations, normal co-ordinate analysis. Simple applications.	5 Lectures

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

5

1	Raman Spectroscopy: Classical and quantum theories of Raman	8 Lectures
	effect. Pure rotational, vibrational and vibrational-rotational Raman spectra, selection rules, mutual principles. Resonance Raman spectroscopy, Coherent anti-stokes Raman Spectroscopy (CARS), Simple applications.	

DR. B & BISHT ASSISTANT PROFESSOR (CHEMISTRY) GOVT. PG COLLEGE BERINAG PITHORAG

Govt P G College Berinag

Teaching Plan

Dr. Balam Singh Bisht, Assistant Professor (Organic Chemistry)

Paper IV M.Sc. SEMESTER III

Inter disciplinary topics in chemistry

S.No.	Contents	Contact
		Hours/
		Lectures
	Green Chemistry: Basic principles of green chemistry. Designing	10
		Lectures
	synthesis choice of starting materials, organic synthesis in solid	1. 1. 1.
	phase reagents, versatile ionic liquids as Scherrer methode.	
	Nano chemistry: History, definition and scope of nanomaterials,	10
	chemical methods for synthesis of nanomaterials, methods of characterization, determination of particle size and surface structure by Scanning Electron microscopy, Transmission Electron microscopy, surface area analysis and Debye-Schrrer method	Lectures
	Data Analysis and Computer: Types of errors, propagation of I	0
	errors, accuracy and precision, least square analysis, average I	ectures
	standard deviation. liner regression, co-variance and correlation coefficient.	
þ	History of development of computers, Main frames, Mini, Micro and	
1ª	Super Computer systems. General awareness of computer hardware .e CPU and other peripheral devices	
E	Basic structure and functioning of computers with a PC as an	
il	Ilustrative example. Memory, I/Q devices, secondary storage.	
C	Computer languages. Operating system with DOS as an example.	
Ir	ntroduction to WINDOWS. Data processing, principles of	
pı	rogramming. Algorithms and flowcharts.	
E	nvironmental Chemistry: Concept and scope, composition of 0	9
at	mosphere, terminology and nomenclature, aerosols, photo I	ectures
ch	emical smog, BOD and COD.	
M	edicinal Chemistry: Primary knowledge of structure activity 0	9
rel	ationship, SAR, quantitative structure activity relationship I	ectures
(Q	SAR), Chemistry of antineoplastic agents and cardiovascular	
dru	igs	

1

0

GOVT.P.G.COLLEGE BERINAG(PITHORAGARH)

TEACHING PLAN:-2023-24

Mr.BHUPENDRA SINGH BISHT

CLASS-M.Sc.3rd Sem.

SUB- PHOTOCHEMISTRY

S.NO	DATE	UNIT	торіс
1	30-10-203	BASIC OF POHTOCHEMISTRY	INTRODUCTION , ABSORPTION AND EMISSION OF PHOTOELECTRON
2	31-10- 2023	п	PHOTOCHEMICAL LAWS , JABLOSKI DIAGRAM AND ITS EXPLANATION
3	20-11-2023	11	PHOTOCHEMICAL STAGES ; PRIMARY AND SECONDARY PROCESS PHOTOPHYSICAL REACTION
4	21-11-2023	11	PHOTOSONSITIZATION ,QUANTAM YIELD AND ITS DETERMINATION
5	22-11-2023	11	FLASH PHOTOLYSIS ,STOPPED FLOW TECHNIQUES
6	27-11-2023	11	REACTIONS OF HIGH AND LOW QUANTUM YEILDES ,SOME REACTION ,FLUROSENCE
7	28-11-2023	11	PHOSPHORESCENCE , CHEMILUMISCENCE WITH EXAMPLES
8	29-11-2023	PHOTOCHEMISTRY OF ORGANIC COMPOUNE	INTRODUCTION , PHOTOCHEM OF ALKENES CIS-TRANS ISOMERISM OF ALKENES
9	12-4-2023	11	NON VERTICAL ENERGY TRANSFER , PHOTOCHEMICAL ADDITION , REACTION OF 13 AND 1,4 DENES DIMENSION
10	12-5-2023	PHOTOCHEMISTRY OF ORGANIC COMPOUNE	INTRODUCTION CTION, NORRISN TYPE -I, II EXPLANTION REOCTIONS IN CYCLIC \$ ACEJCLIC COMP'S
11	12-6-2023	п	NORRISH TYPE I \$II REACTION IN X ,B AND B,Y ANSATUWATED KETIONES
12	12-11-2023	п	PATESRON - BUCHI REACTION AND ITS EXPLENOTION , DHOTOREDUCTION RXNS IN CORBONYE COMPRUNDS .
13	12-12 2023	PHOTOCHEMISTRY OF AROMATIC COMPOUN	ND.INTRODUTION , ISORREISISATION RXNS IN ,CARBONYL COMPOUNDS .
14	13-12-2023	"	DEWAR AND PRISMIANE BENZENE ISORREISATIONS.
15	18-12 2023	"	SINGLET OXYGEN RXNS, PHOTO FRIES REOSSOMGEMENT OF ETHERS.
16	19-12-2023	п	PHOTO FRIES REASSANGMENT OF ANILINDAS BASTON RXN WITH SOME EXAMEPLES.
17	26-12-2023	п	SOME PRACTIC OF BASTON REOCTION .
18	27-12-2023	u .	HOFFRRANN -LOEFLER -FREYTAY REOCTION AND SOME OTHER IRRP REACTION.

DEPARTMENT OF CHEMISTRY GOVERNMENT PG COLLEGE BERINAG TEACHING PLAN 2023-24 MR BHUPENDRA SINGH BISHT CLASS -B.Sc.Ist sem.

SUB- INORGANIC & PHYSICAL CHEMISTRY

5.N0	DATE	UNIT	ТОРІС	
	8-9-2023	ATOMIC STRUCTURE AND PERIODIC PROPERTIES	INTRODUCTION, DUAL NATURE OF MATTER, DE-BROGLIE CONCEPT, HISENBERG NCERTANITY PRINCIPAL	BERG U ERTAINAITY PRINCIPA
2	9-9-2023	"	SIGNIFICANCE OF HISENBERG UNCERTANITY PRINCIPAL	
3	14-9-2023	"	ATOMIC ORBITALS, SCHRODINGER WAVE EQUATION, SIGNICANCE OF ¥AND ¥2	
4	15-09-2023	n	QUANTUM NUMBER, SHAPES OF S, P, D ORBITALS	
ę	16-9-2023	11	AUFBAU ENERGY DIAGRAM, PAULI EXCLUSION PRINCIPAL	
(21-9-2023	"	HUND'S RULE OF MAXIMUM MUTIPLICITY AND ITS EQUATION	
	22-09-2023	"	ELECTRONIC CONFIGRUATION OF ELEMENT, EFFECTIVE NUCLEAER CHARGE	
8	3 23-9-2023	"	SLATER'S RULES AND ITS APPLICATION	
ç	23-9-2023	н	GENERAL IDEA OF MODERN PERIODIC TABLE , ATOMIC AND IONIC RADII	
1(30-9-2023	11	IONISATION POTENTIAL, ELECTRONIC AFFINITY AND ITS TRENDS IN PERIODIC TABLE	
11	10-5-2023	н	ELECTRONEGATIVITY AND ITS APPLICATIOJN	
12	6-6-2023	CHEMICAL BONDING	TYPES OF CHEMICAL BONDS, VBT AND ITS LIMITATIONS	
13	7-7-2023	"	VARIOUS TYPES OF HYBRIDISATION	
14	10-12-2023	"	VSPER THEOREY AND SHAPES OF VARIOUS MOLECULES INCLUDED IN SYALLABUS	
	13-10-2023		RESONANCE , HYPRCONJUGATION AND SOME EXAMPLES	-
	14-10-2023		INDUCTIVE, MESOMERIC AND ELECTROMERIC EFFECTWITH EXAMPLE	
	14-10-2023 19-10-2023		INDUCTIVE, MESOMERIC AND ELECTROMERIC EFFECTIVITH EXAMPLE	-1
		STATES OF MATTER	, , , , , , , , , , , , , , , , , , ,	
	20-10-2023		MILER INDICES, LAWS OF CRYTALLEOGRAPHY	_
	21-10-2023	"	SYMMETRY ELEMENTS IN CRYSTALLINE X-RAYS DIFFRATION OF CRYSTALS	_
	22-11-2023	"	BRAGG'S EQUATION AND NUMERICAL PROBLEMS	
2′	16-11-2023	"	COLLOIDAL STATE OF DEFINATION CLASSIFICATION OF COLLIDES	
22	19-2-2023	"	EXPLANATION OF SOLS AND PROPERTIES KINECTIC, OPTICAL AND ELECTRICAL	
23	19-2-2024	"	STABILITY OF COLLIODS, PROTECTIVE ACTION	
24	23-11-2024	"	HARDY SCHULZE LAW. GOLD NUMBER	1
	DEPARTMENT OF CHEMISTRY			
	TEACHING PLAN 2023-24			
	CLASS BSC 3 SEMESTER			
	SUBJECT-INORGANIC +PHYSICA	AL CHEMISTRY		
				_
				-
				-
N.O	DATE	UNIT	TOPIC	_
-		CHEMISTRY OF TRANISITION ELEMENTS I.II .III. SERIES		
	21-11-2023		INTODUCTION ,CHARACTERSTICS OF D-BLOCK ELEMENTS	-1
	22-11-2023	"	ELECTRONIC AND IONIC RADII, OXIDATION STATES	
	27-11-2023	1	IONISATION ENERGY BOILING AND MELTING POINTS	
	28-11-2023	"	COMPLEX FORMATION, COLOUR AND CATALYTIC PRPERTIES	_
	29-11-2023	H	MAGNETIC PRPERTIES CO-ORDINATION NUMBER AND GEOMETRY	
(5 12-4-2023	и	COMPRATIVE TREATMENT OF 3D,4D,SERIES,MAGNETIC BEHAVIOUR	
	12-5-2023	H	COMPLEX FORMATION OF 4D TO 5D SERIES, MAGNETIC BEHAVIOUR	
8	12-6-2023	1	GEOMETRY AND COLOUR OF 4DTO 5D SERIES	7
	12-11-2023	CO-ORDINATION CHEMISTRY-I	INTRODUCTION ,DEGINITION CO-ORDINATION NUMBER ,CO-ORDINITIONSPHERE	
	12-11-2023		COMPLEX IM OTO TRANISTION METAL COMPLEX ,	-
		1	, ,	-1
	13-12-2023		IUPAC NOMENCLATUSE OF CO-ORDINATION COMPOUNDS.	
12	18-12-2023	l"	WERNES'S THEORY OF CO-ORDINATION COMPOWDS	

DEPARTMENT OF CHEMISTRY GOVT. P.G. COLLEGE BERINAG (PITHORAGARH) TEACHING PLAN (2023-24) Mr. BHUPENDRA SINGH BISHT

CLASS-M.SC. I SEM

SUBJECT- INORGANIC CHEMISTRY + PHYSICAL CHEMISTRY

S.NO.	DATE	UNIT	ΤΟΡΙΟ
1	23-11-2023	a- Stercochemistry and bonding in main group comp	Introduction, VSEPR Theory and its significance, structures included in syllabus
2	24-11-2023		dp-pp bonds, Bent's rule for TBP geometry Energetics of hybridisation
3	25-11-2023		Metal borides, carbides & ritrides preparation, properties, structure & applications
4	30-11-2023	M-L equilibria in solution	Concept of thermodynamic and kinetic stabilities, step wise and overall formation constants and their relation
5	01-12-2023		Factors affecting stability of complexes chelate effect and its therodynamic origin
6	01-12-2023	"	Determination of binary constants by PH- metry and spectrophotometry
7	07-12-2023	Metal p-acid complexes	Introduction, Metal carbonyls, structure and bonding, vib spectra of m-co bonding
8	08-12-2023	н	Reactions of metal carbonyls, metal nitrosyl : preparation, bonding & structure.
9	09-12-2023		Important reactions of transition metal nitrosyls, Complexes of dinitrogen, dioxygen and tertiary phosphine.
10	14-12-2023	cluster compounds	Introduction, higher boranes, carboranes, mettaloboranes.
11	15-12-2023		Mettalocarboranes, metal carbonyl and metalhalide clusters.
12	16-12-2023		clusters with M-M multiple bonds and some questions.
13	21-12-2023	Polyoxometalates	Introduction, Isopoly and heteropoly acids and salts of V, Mo, W.
14	22-12-2023		Nomenclature, classification, preparation and structural aspects of polyacids and anions.
15	23-12-2023	Chemical dynamics	Introduction,Third and general order reactions.
16	28-12-2023		Experimental methods for kinetic studies:-Conductometric, potentiometric and Spectrophotometric methods.
17	29-12-2023		Effect of temperature on rate of reaction.Derivation of Arrhenius equation.
18	30/12/2023	3	Collision theory of reaction rates, steric factor, activated complex theory
19	2-2-2024	п	lonic reactions, kinetic salt effects, steady state concept, kinetic and thermodynamic control of reactions.
20	3-2-2024		Kinetics of gaseous reactions on solid surface, unimolecular & bimolecular surface reactions.
21	8-2-2024	11	Kinetics of condensation and addition polymerization reactions
22	9-2-2024	"	Mechanism of H2-Br2, H2-Cl2 reactions decomposition of acetaldehyde, Ozone and H2O2.